Implementation and performance of a general purpose graphics processing unit in hyperspectral image analysis
نویسندگان
چکیده
A graphics processing unit (GPU) can perform massively parallel computations at relatively low cost. Software interfaces like NVIDIA CUDA allow for General Purpose computing on a GPU (GPGPU). Wrappers of the CUDA libraries for higher-level programming languages such as MATLAB and IDL allow its use in image processing. In this paper, we implement GPGPU in IDL with two distance measures frequently used in image classification, Euclidean distance and spectral angle, and apply these to hyperspectral imagery. First we vary the data volume of a synthetic dataset by changing the number of image pixels, spectral bands and classification endmembers to determine speed-up and to find the smallest data volume that would still benefit from using graphics hardware. Then we process real datasets that are too large to fit DL in the GPU memory, and study the effect of resulting extra data transfers on computing performance. We show that our GPU algorithms outperform the same algorithms for a central processor unit (CPU), that a significant speed-up can already be obtained on relatively small datasets, and that data transfers in large datasets do not significantly influence performance. Given that no specific knowledge on parallel computing is required for this implementation, remote sensing scientists should now be able to implement ata a and use GPGPU for their d
منابع مشابه
Parallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملFast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal
Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Applied Earth Observation and Geoinformation
دوره 26 شماره
صفحات -
تاریخ انتشار 2014